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A linear-algebraic algorithm for identifying rigid-unit modes in networks of

interconnected rigid units has recently been demonstrated. This article presents

a series of enhancements to the original algorithm, which greatly improve its

conceptual simplicity, numerical robustness, computational efficiency and

interpretability. The improvements include the efficient isolation of constraints,

the observation of variable-block separability, the use of singular value

decomposition and a quantitative measure of solution inexactness.

1. Introduction

In crystal structures containing an interconnected network of

rigid units (e.g. polyhedra, molecules, clusters etc.), coopera-

tive patterns of internal distortion that leave the rigid unit

undistorted are often referred to as rigid-unit modes, or RUMs

(Giddy et al., 1993; Dove et al., 1993, 2000; Saint-Gregoire &

Smirnov, 2021). A linear-algebraic algorithm for identifying

small-amplitude cooperative RUMs has recently been

demonstrated (Campbell et al., 2018; Phillips, 2018). The

algorithm allows interconnectedness along one, two or all

three crystal dimensions, accommodates multiple connection

points (e.g. edge or face sharing rather than vertex sharing

only) between rigid units, and allows a single atom to be

shared amongst more than two rigid units. When applying the

algorithm to a complicated crystal structure, some of the

difficulties encountered include (1) the creation and storage of

very large matrices, (2) the slow speed of computer operations

on very large matrices, (3) the accumulation of round-off

errors during the row reduction of large matrices, and (4) the

treatment of numerical tolerances during row reduction,

especially for inexact/approximate solutions associated with

quasi-RUMs (i.e. RUMs that slightly distort some of the

affected rigid bodies). In the present work, we introduce

several theoretical simplifications to the original algorithm

that address these issues.

2. Notation and terminology

Here, we assume a familiarity with the notation and termi-

nology of Campbell et al. (2018), where Npivot is the number of

symmetry-unique pivot atoms (SUPAs) in the child structure,

Nshared is the number of symmetry-unique shared atoms

(SUSAs) in the child structure, Nfree is the number of free and

independent rotational and displacive parameters belonging

to rigid-unit pivot atoms in the child structure, n� is the

number of directly connected pivot atoms (DCPAs) of the �th
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SUSA, Npairs ¼
P

� n� is the total number of SUSA–DCPA

pairings, and Neqs = 3Npairs is the number of equations that

define the cooperative RUM-search problem. In the common

case that every SUPA has exactly two DCPAs, we have Npairs =

2Nshared, though the network connectivity can be more

complicated than this in general. The relationships between

SUPAs, SUSAs and DCPAs is illustrated in Fig. 1.

With three vector components per shared atom, the total

number of shared-atom displacement parameters (SADPs) is

3Nshared. We then define the Neqs � 3Nshared matrix TU to have

three rows (for the SUSA-displacement vector) per SUSA–

DCPA pair and one column per SADP. Each row of TU

contains only one nonzero element (value equal to 1), located

in the column of the corresponding SUSA-displacement

component. Note that if each shared atom were connected to

only one pivot (not really ‘shared’ in that case), TU would

simply be a square identity matrix. But when each SUSA is

connected to multiple DCPAs, each SUSA-displacement

component appears in multiple equations, each unique row of

TU is duplicated at least once and each column of TU has

multiple nonzero elements. TS is an Neqs � Nfree numerical

matrix, which captures the effect of each free and independent

pivot-atom parameter (rotational or displacive) of the child

structure on the displacement of each SUSA via each of its

DCPAs.

TA is an Nfree � Nfree numerical matrix derived from group

representation theory, wherein each column indicates the

pattern of free and independent pivot-atom rotations and

displacements induced by a given symmetry mode. In this

context, symmetry modes are patterns of atomistic rotations

and displacements that prove to be basis functions of the

irreducible representations of the symmetry group of the

undistorted parent structure. These symmetry modes, which

are derived using group representation theory, have elegant

orthogonality and completeness properties (Bradley &

Cracknell, 1972, Section 1.2; Campbell et al., 2006) that are

essential for the algebraic RUM-search method (Campbell et

al., 2018) and to the present work. The number of symmetry

modes must always be equal to Nfree. Here, for convenience,

we further define the (Neqs � Nfree)-dimensional matrix TSA�

�TSTA. Note that we abbreviate the term ‘irreducible repre-

sentation’ as ‘irrep’ for convenience and refer to the abstract

order-parameter vector of a given irrep as its order-parameter

direction (OPD).

The Neqs � (3Nshared + Nfree)-dimensional matrix M =

{TU | TSA} is constructed so that the columns of TU are posi-

tioned before the columns of TSA. When identical rows of TU

have non-identical counterparts in TSA, a SUSA is simulta-

neously displaced in different directions by its DCPAs, which

introduces a constraint on the pattern of pivot-atom rotations

and displacements.

If v = {vU | vA} is a (3Nshared + Nfree)-dimensional vector of

SUSA-displacement parameters and symmetry-mode ampli-

tudes, then each non-trivial solution to the equation

Mv ¼ 0 ð1Þ

is a small-angle RUM. In fact, the null space of M is the vector

space of all possible small-angle RUMs. The last Nfree

components (i.e. the vA part) of each null-space basis vector

provide the coefficients of the linear combination of pivot-

atom symmetry modes (rotational/displacive) that define a

basis RUM.

Often, even a highly complicated network of interconnected

rigid units will have only a small number of RUMs. In other

words, for an adequately interconnected network, even a very

large M matrix tends to have a low-dimensional null space.

3. Examples

Consider the tungsten bronze structures (MxWO3), which are

composed of 3D networks of corner-sharing WO6 octahedra

and charge-balancing metal (M) atoms. The aristotype tetra-

gonal tungsten bronze (TTB) structure has space group P4/

mbm (No. 127) and ten tungsten atoms per unit cell (Wachs-

mann & Jacobs, 1995; Magnéli, 1949) and exhibits a variety of

lower-symmetry octahedral WO6 tilting patterns (Takusagawa

& Jacobson, 1976; Goreaud et al., 1980; Triantafyllou et al.,

1997; Haydon & Jefferson, 2002; Smirnov & Saint-Grégoire,

2014; Whittle et al., 2015; Campbell et al., 2018). In order to

include contributions from all special k vectors, Campbell et al.

(2018) considered a P1-symmetry supercell of TTB with

relative basis {(2, 0, 0), (0, 2, 0), (0, 0, 2)}, which is eight times

larger than the parent, providing Npivot = 80 tungsten SUPAs

and Nshared = 240 oxygen SUSAs with two DCPAs each, so that

Nfree = 3Npivot = 240 and Neqs = 3 � 2 � 240 = 1440. As a

result, the matrices TU, TSA and M have respective dimensions

of 1440 � 720, 1440 � 240 and 1440 � 960.
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Figure 1
In this illustration of a distorted Pnma-symmetry ABO3 perovskite
(21=2 � 2� 21=2 supercell), the set of symmetry-equivalent B-site cations
is purple, the two sets of symmetry-equivalent oxygen atoms are red and
yellow, respectively, and the A-site cations are omitted for visual clarity.
We can arbitrarily select any B-site atom as the symmetry-unique pivot
atom (circled in green) and two inequivalent oxygen atoms as the
symmetry-unique shared atoms (circled in blue), both of which have two
directly connected pivot atoms (circled in purple).



The aristotype hexagonal tungsten bronze (HTB) structure

has space group P6/mmm (No. 191) and nine tungsten atoms

per unit cell (Magnéli, 1953), and also exhibits a variety of

lower-symmetry octahedral WO6 tilting patterns (Prinz et al.,

1992; Smirnov & Saint-Grégoire, 2014; Whittle et al., 2015;

Campbell et al., 2018). A P1-symmetry supercell of HTB with

relative basis {(4, 2, 0), (2, 2, 0), (0, 0, 2)} is 24 times larger

than the parent, providing Npivot = 72 tungsten SUPAs and

Nshared = 216 oxygen SUSAs with two DCPAs each, so that

Nfree = 3Npivot = 216 and Neqs = 3Nshared � 2 = 1296. As a

result, the matrices TU, TSTA and M have respective dimen-

sions of 1296 � 648, 1296 � 216 and 1296 � 864.

Whereas each oxygen vertex is shared between exactly two

WO6 octahedra in TTB or HTB, the corner-sharing network of

(Al/Zn)O4 tetrahedra in Ca3Al4ZnO10 (CAZO) offers more

structural variety. Its orthorhombic structure contains 20 Al/

Zn atoms and 40 O atoms per unit cell. In space group Pbcm

(No. 57), four of the tetrahedral (T = Al/Zn) sites and seven of

the O sites are symmetry unique. While most of the symmetry-

unique oxygen atoms are shared between two tetrahedra, two

are not: the multiplicity-four O1 site is connected only to a

single T site, and the multiplicity-four O3 site is shared

between three T sites (Kahlenberg, Hejny & Krüge, 2019).

CAZO has been reported to exhibit tetrahedral tilting under

high pressure (Kahlenberg, Hejny & Krüge, 2019), and the

isostructural Ca3Al4MnO10 compound might be expected to

do the same (Kahlenberg, Albrecht et al., 2019). In order to

include contributions from all special k vectors, we consider a

P1-symmetry supercell of the Pbcm-symmetry parent cell with

relative basis {(2, 0, 0), (0, 2, 0), (0, 0, 2)}, which is eight times

larger than the parent, providing Npivot = 160 T-site SUPAs

and Nshared = 320 oxygen SUSAs (including the O1 sites). As

for the �–� phase transition in quartz, we find that the TO4

tetrahedra of CAZO must be permitted to simultaneously

rotate and translate in order to remain rigid (Campbell et al.,

2018), which doubles the number of pivot degrees of freedom,

so that Nfree = 2 � 3Npivot = 2 � 480 = 960. Because every

neglected O1-site equation is balanced by an extra O3-site

equation, the number of equations will be as if the oxygen

vertices were all two-connected, so that Neqs = 3 � 2 � 320 =

1920. As a result, the matrices TU, TSA and M have respective

dimensions of 1920 � 960, 1920 � 960 and 1920 � 1920.

4. Isolating the constraints on the RUM space

The matrices M in these examples are so large as to be

somewhat unwieldy. And in general, the generation, manip-

ulation, operations and storage of very large matrices require

considerable computational power, time and storage space.

Because we anticipate the need to apply the algebraic RUM-

search algorithm to systems much larger than these in the

future, improvements are needed. Fortunately, the M matrix

has some special internal structure that can be exploited

towards this end.

We can use elementary row operations to permute the rows

of M into two row blocks, such that the upper block contains

only a single instance of each unique row of TU (i.e. the

information about the relationship between the given shared

atom and the first pivot atom to which it is connected). The

second row block of M then contains any duplicate copies of

the unique rows of TU. The result is a matrix M of the form

M ¼
TU1 TSA1

TU2 TSA2

� �
; ð2aÞ

where TU1 is the 3Nshared � 3Nshared identity matrix, TU2 is a

3(Npairs � Nshared) � 3Nshared matrix of zeros and ones, the

3Nshared � Nfree matrix TSA1 contains those rows of TSA asso-

ciated with the first DCPA of each SUSA, and the 3(Npairs �

Nshared) � Nfree matrix TSA2 contains those rows of TSA asso-

ciated with all other DCPAs of each SUSA. Then, we apply

additional elementary row operations to zero the TU2 block

without altering the TU1 or TSA1 blocks in order to achieve the

form

M0 ¼
1 TSA1

0 T0

� �
; ð2bÞ

where the matrix T0 has the same dimensions as TSA2.

In the common case where each SUSA has exactly two

DCPAs, TU2 and TU1 are identical (both identity matrices),

TSA2 has the same dimensions as TSA1, and T0 = TSA2 � TSA1.

This is the case with the tungsten bronze examples, where the

dimensions of T0 are 3Nshared � Nfree. But in general, the

structure of T0 can be more complicated and will depend on

the number of DCPAs connected to each individual SUSA. In

any case, because the locations of the nonzero values in TU

are prescribed in advance, it is easy to generate T0 directly

without the need to perform any row operations.

Recall the Nfree columns’ of TSA1 and T0 correspondence to

the Nfree rotational and displacive symmetry modes of the

pivot atoms. The identity matrix in the upper left-hand corner

of M0 makes it clear that every SADP is either dependent on

one or more symmetry modes or fixed at zero; none of the

SADPs are independent parameters. This special structure of

M0 ensures that T0 alone shapes the interdependencies

amongst symmetry modes that define the vector space of

independent RUMs, the determination of which is the essence

of the algebraic RUM-search algorithm. In other words, there

is a one-to-one correspondence between the solutions of

equation (1) and the solutions of

T0vA ¼ 0: ð3Þ

Thus, only the null space of T0 (rather than all of M) needs to

be determined. The upper portion of M0 places no additional

restrictions on the RUMs of the system, but merely reveals the

pattern of SADPs associated with each basis RUM of the null

space of T0.

The computational complexity of a typical algorithm for

determining the null space of a matrix with nr rows and nc

columns is of order Oðnrn
2
cÞ. Because T0 is generally much

smaller than M, an algorithm that determines only the null

space of T0 rather than of the full matrix M is computationally

more efficient. The size of T0 is 648 � 216 for HTB, 720 � 240

for TTB and 960 � 960 for CAZO. Owing to the reduced row

and column counts relative to the full matrix M, the expected
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complexity reduction factors offered by using T0 are 32 for

HTB and TTB, and eight for CAZO.

5. Singular value decomposition

An arbitrary nr � nc numerical matrix A always has a unique

singular value decomposition (SVD) (Strang, 2016, ch. 7),

which can be expressed as a product A = URVt, where U is an

nr � nr unitary matrix, V is an nc � nc unitary matrix, and R is

an nr � nc matrix such that elements on the main diagonal

values are all non-negative and appear in order of decreasing

magnitude and such that all elements off the main diagonal are

zero. In our application of SVD, the matrix A is real valued, so

that U and V are also orthogonal (a special case of unitary).

The diagonal values of R are called the singular values of A.

The orthonormal columns of V (or rows of Vt) are called the

right-singular vectors (RSVs) of A, and the columns of U are

called the left-singular vectors (LSVs) of A.

Each row of RVt is an RSV vi of A multiplied by the

corresponding singular value �i, so that RVtvi = �iei, where ei is

the nr-dimensional unit vector with a one in the ith component

and zeros everywhere else. It is then obvious that the basis

vectors of the null space of A are those rows of Vt that

correspond to zero singular values in R. Approximate null-

space vectors (i.e. those of approximate RUMs) can also be

identified as rows of Vt corresponding to acceptably small but

nonzero singular values. The matrix U has no impact on the

null space of A and so can be neglected in the present context.

The SVD of the symmetric matrix AtA = (URVt)tURVt =

VR2Vt shows that its LSVs are identical to its RSVs, and also

identical to the RSVs of A. In fact, since R2 is a square

diagonal matrix, the SVD of AtA is also its eigenvalue

decomposition, so that the RSVs and squared singular values

of A are also the eigenvectors and eigenvalues of AtA.

The algebraic RUM-search algorithm of Campbell et al.

(2018) determined the null space of the matrix M by first

bringing it to reduced row-echelon form through the process

of Gaussian elimination using the RowReduce function of the

Mathematica 11.1 (Wolfram, 2017) programming language

with a user-specified tolerance factor. A Gaussian-elimination

algorithm must decide, on the basis of a binary comparison

against a user-specified tolerance factor, whether to rescale a

small matrix pivot up to 1 by multiplying the entire pivot row

by a large number or to round it down to 0 and leave the rest

of the row unchanged. Rescaling to 1 declares the mode either

to be dependent on some other mode or to be impossible (not

a RUM), whereas rounding to 0 identifies the corresponding

mode as a RUM. The decision to scale a value that should be

zero up to one, or to round a truly nonzero value down to zero,

has a nonlinear effect on subsequent pivot decisions and on

each null-space vector.

As a result, Gaussian elimination tends to be unstable when

small but nonzero ‘matrix pivots’1 are encountered (Golub &

Van Loan, 1996, Sections 3.3 and 5.5), though partial pivoting

is known to help (Higham & Higham, 1989). For exact null-

space vectors (exact RUMs), small but nonzero matrix pivots

often arise because of uncertainties in the atomic positions

and lattice parameters of the parent structure, and the

subsequent accumulation of round-off errors during row

operations, though both RowReduce and an optimized in-

house code for Gaussian elimination with partial pivoting tend

to handle this scenario well. For approximate null-space

vectors (quasi-RUMs), however, Gaussian elimination proved

to be a significant hindrance; when the tolerance factor is

raised high enough to accept one or more quasi-RUMs,

sudden changes in the other null-space vectors are often quite

noticeable.

For determining the exact or approximate null space of T0,

SVD is superior to Gaussian elimination (Trefethen & Bau,

1997, pp. 28, 84 and 143), though the two approaches have

comparable computational complexity. The process of

computing the SVD is strictly linear, even when dealing with

small but nonzero singular values. The only nonlinear decision

to be made comes after the decomposition, when the singular

values are compared against the tolerance factor to determine

which RSVs are accepted as RUMs. Because the singular

values and vectors have already been determined by that

point, the decision to accept or reject one RSV has no impact

on the accuracy of the corresponding RSVand no impact at all

on the acceptance or accuracy of any other RSV, hence the

stability of the SVD approach.

6. Block separability

The determination of the null space of T0 would be greatly

simplified if it could be broken up into smaller pieces that

could be treated separately without loss of generality. Owing

to the special properties of symmetry modes, the parameter

set of choice in the algebraic RUM-search algorithm, this is

possible. In Appendix A, we prove that the pattern of multi-

pivot shared-atom displacements induced by a symmetry

mode of pivot-atom rotations is a basis function of the same

irrep to which the original symmetry mode belongs, which

means that the shared-atom displacement patterns also have

elegant orthogonality and completeness properties. Note that

the term ‘displacement pattern’ here refers to split-atom

displacements wherein the non-cooperative displacements of

the same SUSA by distinct DCPAs are distinct components of

the overall multi-atom ‘displacement’ vector.

Imagine starting with a special matrix whose columns are

these multi-pivot shared-atom-displacement basis functions.

Column vectors belonging to different irreps, or even to

different branches of the same irrep, are strictly orthogonal

and therefore independent. The matrix TSA can be constructed

from this special matrix via row operations. Additional row

operations further separate out the matrix T0 at the bottom,

which inherits and fully encodes any column dependencies

from the original matrix of irrep basis functions. This implies

that columns of T0 associated with distinct irreps or distinct

OPD branches of the same irrep are mutually independent,

though not necessarily orthogonal. Thus, if we partition the

columns (also known as modes) of T0 into mutually exclusive
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1 The word ‘pivot’ is used here in the context of Gaussian elimination rather
than object rotation.



column blocks by irrep and OPD branch, there can be no

inter-dependencies between the column spaces of different

blocks. Because each column of T0 belongs to the symmetry

mode of a specific branch of a specific order parameter of a

specific irrep, we sometimes use the terms ‘column’ and

‘symmetry mode’ interchangeably.

The key result here can be restated in slightly different

terms. Symmetry modes from different irreps or irrep bran-

ches must be independent owing to the properties of irrep

basis functions. Thus, only symmetry modes from different

order parameters, but belonging to the same irrep and branch,

can be interdependent. Potentially interdependent symmetry

modes get grouped within a block. The null spaces of distinct

symmetry-mode blocks can be determined separately and one

at a time without loss of generality. We refer to this property as

‘block separability’. The block separability property provides

a tremendous simplification of the RUM-search algorithm.

The columns within a block of T0 correspond in a one-to-

one fashion to the distinct order parameters contributed to the

child structure by that irrep, and may have interdependencies,

so that some columns of a block with a non-trivial null space

can be independent while others depend on the independent

columns of that block. If a block with n columns has one

independent RUM (i.e. one zero or near-zero singular value),

we can view one participating column or symmetry mode (it

does not matter which one) as the independent variable and

view the other n � 1 columns as depending on it in fixed

proportions. However, it is more helpful to view the RUM as a

linear combination of symmetry modes whose coefficients are

the components of the associated normalized RSV multiplied

by an overall variable amplitude. In general, a symmetry-

mode block can have multiple zero or near-zero singular

values, and therefore multiple RUMs that span a multi-

dimensional null space. RSVs with finite singular values are

non-cooperative or non-RUM like. The larger the singular

value, the less cooperative the RSV.

Table 1 shows how the 240 rotational symmetry modes of

the TTB example are distributed over six wavevector stars and

36 irreps of space group No. 127. For a given irrep, the second

number in parentheses is the number of independent OPD

branches, which is also the number of symmetry-mode blocks

belonging to the irrep. The first number in parentheses is the

number of order parameters contributed by the irrep, which is

also the number of symmetry modes per block for that irrep.

Irrep R1, for example, provides four blocks with ten symmetry

modes each, whereas irrep R2 has four blocks of five symmetry

modes each. The R ¼ ½0; 1
2 ;

1
2� star then has eight blocks and 60

symmetry modes altogether. Summed over each of its k stars,

the TTB example has 64 symmetry-mode blocks. However,

only the eight blocks corresponding to Zþ5 , A�5 and R1 prove to

have non-trivial null spaces. These are the eight basis RUMs

described by Campbell et al. (2018). Table 1 also shows how

the 216 rotational symmetry modes of the HTB example are

distributed over eight wavevector stars and 42 irreps of space

group No. 191. Summed over each of its k stars, the HTB

example has 132 symmetry-mode blocks, though only the 11

blocks corresponding to Aþ3 , Aþ6 and L�2 prove to have non-

trivial null spaces. These are the 11 basis RUMs described for

HTB by Campbell et al. (2018).

Recall that the computational complexity of the determi-

nation of the null space of an nr � nc matrix is of order

Oðnrn
2
cÞ. We partition the columns of T0 into blocks, where s�

is the block size, which is the number of columns in any block

associated with irrep � (i.e. the number of instances of the

irrep in the overall pattern), and d� is the block repetition,

which is the number of blocks contributed by the irrep � (i.e.

the number of independent variables in the OPD, which is

� the irrep dimension), so that nc ¼
P

� d�s�. The reduced

complexity is of order Oðnrn
2
rmsÞ; and the complexity-
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Table 1
Irreps capable of contributing rotational order parameters to the child
structures defined above for HTB, TTB and CAZO, grouped according to
k vector.

In parentheses next to each irrep, we include the block size s� and the block
repetition d�. In parentheses next to each k vector, we give the total number of
symmetry modes contributed by irreps at that k vector (

P
� d�s�) and the total

number of independent OPD branches available at that k vector (
P

� d�).
Irreps that produce RUMs are indicated with an asterisk (*). The data for TTB
and HTB are modified with permission from Tables 3 and 5 of Campbell et al.
(2018).

TTB (s�, d�).

C(30, 12) M(30, 12) Z(30, 12) A(30, 12)
�þ1 ð1; 1Þ Mþ1 Mþ4 ð2; 2Þ Zþ1 ð1; 1Þ Aþ1 Aþ4 ð2; 2Þ
�þ2 ð2; 1Þ Mþ2 Mþ3 ð2; 2Þ Zþ2 ð2; 1Þ Aþ2 Aþ3 ð2; 2Þ
�þ3 ð2; 1Þ Mþ5 ð2; 2Þ Zþ3 ð2; 1Þ Aþ5 ð2; 2Þ
�þ4 ð1; 1Þ M�1 M�4 ð2; 2Þ Zþ4 ð1; 1Þ A�1 A�4 ð2; 2Þ
�þ5 ð6; 2Þ M�2 M�3 ð1; 2Þ Zþ5 ð6; 2Þ* A�2 A�3 ð1; 2Þ
��1 ð2; 1Þ M�5 ð6; 2Þ Z�1 ð2; 1Þ A�5 ð6; 2Þ*
��2 ð2; 1Þ Z�2 ð2; 1Þ
��3 ð2; 1Þ X(60, 8) Z�3 ð2; 1Þ R(60, 8)
��4 ð2; 1Þ X1(10, 4) Z�4 ð2; 1Þ R1(10, 4)*
��5 ð2; 2Þ X2(5, 4) Z�5 ð2; 2Þ R2(5, 4)

HTB (s�, d�).

C(9, 7) A(9, 7) H(18, 14) K(18, 14)
�þ2 ð1; 1Þ Aþ2 ð1; 1Þ H2(1, 2) K2(1, 2)
�þ3 ð1; 1Þ Aþ3 ð1; 1Þ* H3(1, 2) K3(1, 2)
�þ4 ð1; 1Þ Aþ4 ð1; 1Þ H4(1, 2) K4(1, 2)
�þ5 ð1; 2Þ Aþ5 ð1; 2Þ H5(1, 4) K5(1, 4)
�þ6 ð2; 2Þ Aþ6 ð2; 2Þ* H6(2, 4) K6(2, 4)

L(27, 21) M(27, 21) K(54, 24) Q(54, 24)
Lþ2 ð1; 3Þ Mþ2 ð1; 3Þ �1(1, 6) Q1(1, 6)
Lþ3 ð1; 3Þ Mþ3 ð1; 3Þ �2(3, 6) Q2(3, 6)
Lþ4 ð1; 3Þ Mþ4 ð1; 3Þ �3(3, 6) Q3(3, 6)
L�1 ð2; 3Þ M�1 ð2; 3Þ �4(2, 6) Q4(2, 6)
L�2 ð2; 3Þ* M�2 ð2; 3Þ
L�3 ð1; 3Þ M�3 ð1; 3Þ
L�4 ð1; 3Þ M�4 ð1; 3Þ

CAZO (s�, d�).

C(120, 8) X(120, 8) S(120, 4) Y(120, 4)
�þ1 ð14; 1Þ Xþ1 ð14; 1Þ S1(30, 2)* Y1(30, 2)*
�þ2 ð16; 1Þ Xþ2 ð16; 1Þ* S2(30, 2) Y2(30, 2)
�þ3 ð14; 1Þ Xþ3 ð14; 1Þ*
�þ4 ð16; 1Þ Xþ4 ð16; 1Þ* U(120, 4) Z(120, 4)
��1 ð14; 1Þ* X�1 ð14; 1Þ U1(30, 2)* Z1(30, 2)
��2 ð16; 1Þ* X�2 ð16; 1Þ U2(30, 2) Z2(30, 2)
��3 ð14; 1Þ* X�3 ð14; 1Þ
��4 ð16; 1Þ* X�4 ð16; 1Þ R(120, 4) T(120, 4)

R1R2(30, 4) T1T2(30, 4)



reduction factor is (nc/nrms)
2, where nrms ¼ ð

P
� d�s2

�Þ
1=2. The

values of ðs�; d�Þ are given in parentheses in Table 1 for each

irrep contributing to the HTB, TTB and CAZO examples.

According to these data, the complexity-reduction factor

provided by block separability should be roughly (216/

20.78)2 = 108 for HTB, (240/37.74)2
’ 40 for TTB and (960/

158.80)2
’ 37 for CAZO. HTB notably benefits from a large

number of relatively small blocks.

An analysis of computational complexity alone fails to

capture the greatest advantage of block separability, which is

improved robustness against false-positive detection. When

symmetry-mode blocks are not separated, the numerous row

operations in one column propagate errors and uncertainties

into all subsequent columns, whether in the same block or not,

an effect that gets compounded as the pivot column advances.

For large systems with many symmetry modes and symmetry-

mode blocks, we observe that mutually independent blocks

can still erroneously interfere with one another. This problem

is entirely eliminated when block separability is exploited.

For TTB and HTB, each symmetry-mode block of each

RUM-capable irrep contributes a single RUM. But in general,

a block with multiple columns can give rise to multiple inde-

pendent RUMs, as seen for the CAZO example in Table 2.

7. Singular values and tolerance factors

By treating each symmetry-mode block separately, we are no

longer required to employ a single tolerance to simultaneously

differentiate all quasi-RUMs and false positives according to

their singular values, which completely resolves a key difficulty

reported by Campbell et al. (2018). The tolerance can be

chosen separately for each block if desired, which can be

helpful. Recall that singular values are non-negative and

appear in R in descending order. For a given block, each RSV

with a singular value equal to zero or differing from zero only

because of propagated uncertainties can be viewed as an

independent exact RUM (i.e. it distorts no rigid units), and

each RSV with a nonzero singular value below the block-

specific tolerance can be viewed as an independent quasi-

RUM (i.e. it introduces only minor distortions of the rigid

units).

It is common for distinct branches of the OPD to produce

symmetry-equivalent patterns of rigid-unit rotations and

displacements within the child structure (i.e. different domains

of the single-branch order parameter that are related by child

symmetry operations). Naturally, the singular values of

symmetry-mode blocks arising from such branches of the same

irrep will be identical. When distinct branches of the OPD do

not give rise to symmetry-equivalent patterns of rigid-unit

rotations and displacements, their singular values will

normally (but not necessarily) be different.

Singular values from selected symmetry-mode blocks of

matrix T0 are given in Table 2 for each of the HTB, TTB and

CAZO examples. For HTB, we detect six exact RUMs

belonging to Aþ3 ðaÞ, Aþ6 ða; bÞ and L�2 ða; b; cÞ, as expected. The

Aþ3 irrep has only one block and one symmetry mode, which is

a RUM, as identified by a singular value of zero. The three

symmetry-mode blocks of irrep L�2 share the same row of the

table because they are equivalent by symmetry and have

identical singular values; the two blocks of Aþ6 similarly share

a row. Each block of L�2 and Aþ6 has two singular values, only

one of which is zero, and therefore has only one independent

RUM. The blocks of Aþ5 , �þ4 and �þ5 do not have RUMs and

are provided merely for contrast. The blocks of irreps Aþ5 and

�þ5 have the smallest last singular value (0.09720) that does not

qualify for RUM status. The block of irrep �þ4 has the largest

last singular value (0.51664) seen for HTB. Note that the a and

b branches of Aþ5 ða; bÞ, which are not symmetry equivalent,

yield different singular values, as is the case for �þ5 ða; bÞ; and

yet, the a branches (or the b branches) of Aþ5 and �þ5 , which
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Table 2
Singular values from selected symmetry-mode blocks of matrix T0 for the
HTB, TTB and CAZO examples.

All blocks with exact RUMs or suspected quasi-RUMs (i.e. having zero or
near-zero singular values as indicated in bold) are presented, along with those
of a few other blocks for contrast. Blocks from branches of the same irrep
having identical singular values share a single row for compactness. The
number s� of symmetry modes per block is shown in the second column. The
block repetition d� is evident from the number of free variables in the OPD of
each irrep. Up to six singular values are listed for each block in descending
order. When s� > 6, only the lowest five and the maximum singular values are
given; those not listed are indicated by ‘ . . . ’.

Irrep/OPD
(HTB) s� �max �s��4 �s��3 �s��2 �s��1 �s�

Aþ3 ðaÞ 1 0.00000 . . . . . . . . . . . . 0.00000
L�2 ða; b; cÞ 2 0.34213 . . . . . . . . . 0.34213 0.00000
Aþ6 ða; bÞ 2 0.48333 . . . . . . . . . 0.48333 0.00000
Aþ5 ða; 0Þ 1 0.09720 . . . . . . . . . . . . 0.09720
Aþ5 ð0; bÞ 1 0.15625 . . . . . . . . . . . . 0.15625
�þ5 ða; 0Þ 1 0.09720 . . . . . . . . . . . . 0.09720
�þ5 ð0; bÞ 1 0.15625 . . . . . . . . . . . . 0.15625
�þ4 ðaÞ 1 0.51664 . . . . . . . . . . . . 0.51664

Irrep/OPD
(TTB) s� �max �s��4 �s��3 �s��2 �s��1 �s�

A�5 ða; bÞ 6 0.47680 0.42946 0.38615 0.25554 0.15626 0.00000
Zþ5 ða; bÞ 6 0.47663 0.42930 0.38613 0.25552 0.15695 0.00000
R1(a, b, c, d) 10 0.46201 0.28393 0.27598 0.14625 0.13564 0.00292
�þ4 ðaÞ 1 0.08603 . . . . . . . . . . . . 0.08603
Zþ4 ðaÞ 1 0.08603 . . . . . . . . . . . . 0.08603
X2(a, b, c, d) 5 0.20551 0.20551 0.17541 0.15330 0.12664 0.09626
R2(a, b, c, d) 5 0.20551 0.20551 0.17541 0.15330 0.12664 0.09626
Mþ2 Mþ3 ða; bÞ 2 0.43852 . . . . . . . . . . . . 0.37926

Irrep/OPD
(CAZO) s� �max �s��4 �s��3 �s��2 �s��1 �s�

S1(a, b) 30 0.32480 . . . 0.02016 0.01110 0.00635 0.00001
Y1(a, b) 30 0.32732 . . . 0.01907 0.01179 0.00731 0.00001
��4 ðaÞ 16 0.28317 . . . 0.02638 0.01059 0.00001 0.00000
Xþ2 ðaÞ 16 0.28444 . . . 0.04256 0.01785 0.00002 0.00001
��3 ðaÞ 14 0.27858 . . . 0.03111 0.02525 0.01321 0.00000
Xþ3 ðaÞ 14 0.31946 . . . 0.04550 0.02936 0.01413 0.00001
��1 ðaÞ 14 0.32220 . . . 0.04890 0.02381 0.01935 0.00000
Xþ4 ðaÞ 16 0.31957 . . . 0.04264 0.00001 0.00001 0.00000
��2 ðaÞ 14 0.32228 . . . 0.04821 0.00002 0.00001 0.00000
U1(a, b) 30 0.32247 . . . 0.02297 0.02104 0.01193 0.00060
Z1(a, b) 30 0.32497 . . . 0.02181 0.01272 0.01197 0.00189
Z2(a, b) 30 0.32507 . . . 0.02206 0.01707 0.00737 0.00193
Y2(a, b) 30 0.29390 . . . 0.01895 0.01263 0.00569 0.00481
�þ3 ðaÞ 30 0.32697 . . . 0.07634 0.04432 0.03149 0.02145



cannot be related by symmetry, have blocks with the same

singular values, indicating that their non-cooperative RSVs

split the shared atoms in very similar ways. In summary, a

tolerance of 0.00001 is adequate for differentiating the

singular values of RUMs from those of non-cooperative RSVs

of HTB.

For TTB, we detect four exact RUMs (as seen in Table 2)

belonging to irreps Zþ5 ða; bÞ and A�5 ða; bÞ, and four quasi-

RUMs belonging to irrep R1(a, b, c, d), as expected. The four

exact RUMs belonging to A�5 ða; bÞ and Zþ5 ða; bÞ are clearly

evident as symmetry-mode blocks containing a single zero

singular value. We further identify the four blocks of

R1(a, b, c, d) as quasi-RUMs owing to the smallness of their

last singular value (0.00292). The blocks of �þ4 ðaÞ and Zþ4 ðaÞ

have the next-smallest last (and only) singular value (0.08603),

which is roughly 30 times larger than that of R1, making it clear

that the R1 RSVs are far more cooperative or RUM like. The

other TTB symmetry-mode blocks in the table have no RUMs

and are presented merely for contrast. Irreps X2 and R2 were

selected because they have curiously identical singular values,

indicating that their blocks have some interesting structural

similarities – only different in their action along the direction

perpendicular to the TTB layers. There were also several other

such pairs of irreps. The blocks of Mþ2 Mþ3 have the largest last

singular value (0.37926) seen for TTB. In summary, a tolerance

of 0.003 is adequate for differentiating the singular values of

RUMs from those of non-cooperative RSVs of TTB.

Owing to the presence of some non-shared polyhedral

vertices in its framework, the CAZO example has a fairly large

number of RUMs (as seen in Table 2). The symmetry-mode

blocks belonging to irreps ��1 ðaÞ, ��2 ðaÞ, ��3 ðaÞ, ��4 ðaÞ, Xþ2 ðaÞ,

Xþ3 ðaÞ, Xþ4 ðaÞ, S1(a, b) and Y1(a, b) have exact RUMs Some of

these exact RUMs correspond to very small nonzero singular

values of order 0.00001, which we judge to be the result of

accumulated error propagation. Some of these blocks have

multiple independent RUMs: two RUMs for each block of

��4 ðaÞ and Xþ2 ðaÞ and three RUMs for each block of ��2 ðaÞ and

Xþ4 ðaÞ. Each instance of a zero singular value within a block

indicates a distinct exact RUM.

We now call attention to an important caveat. Because the

RUMs of CAZO simultaneously require rigid-unit rotations

and translations, it was necessary to include pivot-atom-

displacement symmetry modes in the analysis. This allowed

each of the ferroelectric irreps (��2 , ��3 and ��4 ) to produce

one purely displacive symmetry mode wherein the entire

crystal shifts along a given crystal axis. Naturally, because such

ferroelectric displacements do not distort any of the rigid

bodies, they will have zero singular values in the present

analysis. But we cannot refer to them as RUMs. After elim-

inating the ferroelectric displacement modes, the total number

of exact RUMs from the CAZO example is 12 rather than 15.

The CAZO blocks belonging to irrep U1 have a slightly

larger last singular value of 0.00060, which still suggests a

quasi-RUM. The next-smallest last singular values of 0.00189

and 0.00193 belong to the symmetry-mode blocks of irreps Z1

and Z2, respectively, followed by several irreps (including Y2)

with smallest last singular values of around 0.005. Although

these last singular values of Z1 and Z2 are slightly smaller than

that of the quasi-RUMs of TTB, we have other means of

judging their RSVs to be inadequately RUM like, as we will

explain in the next section. The symmetry-mode block of �þ3
has the second-largest last singular value (0.32697) seen for

CAZO.

8. Relative r.m.s. deviation

In addition to judging the smallness of a singular value, one

should also visually validate the pattern of rigid-unit rotations

and displacements arising from the corresponding RSV before

declaring it to be a quasi-RUM. A quantitative measure of

how far a given pattern deviates from exactness [i.e. the

magnitude of Mv in equation (1)], or rather to what extent the

rigid bodies become distorted, would also be helpful. We now

introduce such a measure.

For an exact RUM, each of the DCPAs of a given SUSA

induce precisely the same total displacement of the SUSA (via

DCPA rotation and translation). For a quasi-RUM, however,

the various DCPA-induced displacements of a given SUSA

are generally different, so that one can define a distribution of

two or more SUSA displacements, from which a mean

displacement and a standard deviation from the mean can be

computed. Then, considering all of the SUSAs of the child cell,

we can define the Wyckoff-multiplicity-weighted r.m.s.

average of the mean-displacement magnitudes and standard

deviations.

Let vA be an RSV of T0 (having nfree components), consider

the vector TSAvA (having neqs components), and let the three-

dimensional vector u�� be formed by taking the three elements

of TSAvA corresponding to the vector displacement of the �th

SUSA induced by its �th DCPA (among n� DCPAs for that

SUSA) and transforming them from lattice coordinates into

Cartesian coordinates using the child-cell parameters. We

define the average and difference vectors

a� ¼
1

n�

X
��

u�� and d�� ¼ u�� � a�; ð4Þ

and use them to construct the r.m.s. split-atom displacement

and the standard deviation of the distribution of difference

vectors for a given SUSA:

u� ¼
1

n�

X
��

ju�� j
2

 !1=2

and d� ¼
1

n�

X
��

jd�� j
2

 !1=2

: ð5Þ

Next, define h� to be the Wyckoff multiplicity of the �th

SUSA, define h ¼
P

� h� to be the total number of SUSAs in

the child unit cell, define

u ¼
1

h

X
�

h�u2
�

 !1=2

and d ¼
1

h

X
�

h�d2
�

 !1=2

ð6Þ

to be the respective multiplicity-weighted r.m.s. averages of

the mean displacements and deviations from all of the SUSAs,

and define the ‘relative r.m.s. deviation’ (RrmsD) to be
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r ¼ d=u: ð7Þ

The RrmsD provides a quantitative and easily interpretable

measure of the inexactness of the RSV (or any other linear

combination of symmetry modes) as a solution of equation

(3). It has a maximum value of 1, which applies to the case of a

maximally non-cooperative mode pattern (i.e. the DCPAs of

every SUSA act in directions that cancel to zero so that

d�� ¼ u��), and a minimum value of 0 for an exact or perfectly

cooperative solution (i.e. u�� ¼ a� so that d�� ¼ 0). The

denominator u of the RrmsD can only be zero for a mode that

displaces no shared atoms, which cannot happen since we have

only considered modes that actually contribute to a distortion.

For a slightly inexact solution (a quasi-RUM), r will have a

small but positive value (0< r� 1).

Consider the hypothetical pre-distorted perovskite example

from Campbell et al. (2018), which was based on the octahe-

dral rotations present in a Pnma-symmetry 21=2 � 2� 21=2

supercell (a = 5.74731, b = 7.69287, c = 5.53667) of the cubic

(Pm3m) parent, and three rotational symmetry modes

Rþ4 ða;�a; 0Þ, Xþ5 ða; a; 0; 0; 0; 0Þ and Mþ3 ð0; a; 0Þ, of which both

Rþ4 and Mþ3 prove to be quasi-RUMs

(Rodrı́guez-Carvajal et al., 1998; Howard

& Stokes, 1998, 2005). Campbell et al.

(2018) present the relevant matrix M

towards the end of Section 2.7. The 12

numbers in each mode column can be

partitioned into the three-dimensional

vectors u�� (� runs over two SUSAs of

multiplicity h1 = 4 and h2 = 8, and �� runs

over n� ¼ 2 DCPAs for each SUSA). The

RrmsDs for this distorted perovskite

example, and the intermediate quantities

used to obtain them, are given in Table 3.

For each irrep listed in Table 2, the corresponding entry in

Table 4 presents the RrmsDs of the RSVs corresponding to

selected singular values. Each near-zero singular value is

presented, along with the last singular values from symmetry-

mode blocks of irreps that do not support cooperative RUMs,

and even one very large singular value from each example. We

observe that the RrmsD scales loosely with, but is not

proportional to, the singular value. The last irrep presented for

each example has a very large RrmsD and illustrates an

extreme example of non-cooperative character.

For the HTB and TTB examples, the distinctions in Table 4

between the RrmsDs of RUMs and non-cooperative RSVs are

striking. For the CAZO example, the distinction is less clear,

though the RrmsDs still inform the decision on where to draw

the line between RUMs and non-cooperative RSVs.

Depending on the problem at hand, one could be either strict

or lenient in deciding what level of rigid-unit distortion to

tolerate. The RSVs from the last singular values of irreps Z1

and Z2 have RrmsDs below 2% but are still three to four times

less cooperative than that of irrep U1.

9. A symmetric matrix formulation

In discussing the substantially inexact quasi-RUMs of the R1

irrep of TTB, Campbell et al. (2018) pointed out that, when the

tolerance factor is raised sufficiently high to detect them, a

number of false positives are detected for other irreps. They

reported finding a way to mitigate this difficulty, but did not

explain it in detail. The approach employed was to row reduce

the symmetric matrix MtM rather than M. The use of MtM

arises naturally in the context of minimizing the magnitude of

a nonzero deviation Mv.

Consider the square matrix

Y ¼ M0
t
M0 ¼

1 TSA1

Tt
SA1 Tt

SA1TSA1 þ Tt
0T0

� �
: ð8Þ

If we use elementary row operations to eliminate the lower-

left block of Y, we obtain

Y0 ¼
1 TSA1

0 �Tt
SA1TSA1 þ Tt

SA1TSA1 þ Tt
0T0

� �
¼

1 TSA1

0 Tt
0T0

� �
:

ð9Þ
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Table 3
The intermediate quantities used to calculate the relative r.m.s. deviations of the quasi-RUMs of
the pre-distorted perovskite example from Campbell et al. (2018).

Mode � � u�� u� (Å) d� (Å) u (Å) d (Å) r

Rþ4 1
1 (0.00000, �0.20955, �0.97700)

0.99922 0.20955
0.82498 0.18108 0.21949

2 (0.00000, +0.20955, �0.97700)

2
1 (0.00000, �0.63451, +0.15004)

0.72227 0.16501
2 (0.00000, �0.77183, �0.15004)

Mþ3 1
1 (+0.1983, 0.0000, +0.0348)

0.20137 0.00000
0.80379 0.13827 0.17202

2 (+0.1983, 0.0000, +0.0348)

2
1 (�0.6005, 0.0000, +0.8472)

0.97408 0.16934
2 (�0.7305, 0.0000, +0.5345)

Table 4
Relative r.m.s. deviations (r) of the RSVs corresponding to selected
singular values (�) from Table 2 for the HTB, TTB and CAZO examples.

Values small enough to clearly indicate a RUM or quasi-RUM are indicated in
bold.

� r � r

HTB CAZO
Aþ3 ðaÞ 0.00000 0.00000 S1(a, b) 0.00001 0.00004
L�2 ða; b; cÞ 0.00000 0.00000 Y1(a, b) 0.00001 0.00005
Aþ6 ða; bÞ 0.00000 0.00000 ��4 ðaÞ 0.00000 0.00000
Aþ5 ða; 0Þ 0.09720 0.53294 0.00001 0.00003
Aþ5 ð0; bÞ 0.15625 0.53294 Xþ2 ðaÞ 0.00001 0.00004
�þ5 ða; 0Þ 0.09720 0.53294 0.00002 0.00005
�þ5 ð0; bÞ 0.15625 0.53294 ��3 ðaÞ 0.00000 0.00000
�þ4 ðaÞ 0.51664 1.00000 Xþ3 ðaÞ 0.00001 0.00007

��1 ðaÞ 0.00001 0.00006
TTB Xþ4 ðaÞ 0.00000 0.00003
A�5 ða; bÞ 0.00000 0.00000 0.00001 0.00003
Zþ5 ða; bÞ 0.00000 0.00000 0.00001 0.00003
R1(a, b, c, d) 0.00292 0.00423 ��2 ðaÞ 0.00000 0.00000
�þ4 ðaÞ 0.08603 0.38641 0.00001 0.00003
Zþ4 ðaÞ 0.08603 0.38641 0.00002 0.00006
X2(a, b, c, d) 0.09626 0.43504 U1(a, b) 0.00060 0.00443
R2(a, b, c, d) 0.09626 0.43504 Z1(a, b) 0.00189 0.01326
Mþ2 Mþ3 ða; bÞ 0.37926 0.87147 Z2(a, b) 0.00193 0.01644

0.43852 0.94427 Y2(a, b) 0.00481 0.04062
�þ3 ðaÞ 0.02145 0.15099

0.32697 0.92987



Because only row operations were involved in generating M

from M0, they have the same null space. For the same reason,

Y and Y0 also have the same null space. If M0v = 0 for some

vector v, then Yv = M0t(M0v) = 0. If M0v 6¼ 0 for some vector v,

then M0v is a nonzero vector in the column space of M0, which

also implies that Yv = M0t(M0v) 6¼ 0. Thus, M0v = 0 if and only

if Yv = 0, so that M0 and Y have the same null space. Clearly,

M, MtM, M0, Y = M0tM0 and Y0 all have the same null space.

Just as the constraints on the symmetry modes imposed by

matrix M or M0 are determined entirely by the null space of

matrix T0, the constraints on the symmetry modes imposed by

matrix Y or Y0 are determined entirely by the null space of the

Nfree � Nfree matrix Tt
0T0. By the same arguments made above,

T0 and Tt
0T0 have the same null space and therefore seem to

provide interchangeable routes to the desired constraints. In

general, Tt
0T0 tends to be a much smaller matrix than T0. For

the example structures presented above, the dimensions of

Tt
0T0 are 216 � 216 for HTB, 240 � 240 for TTB and

960 � 960 for CAZO. However, because the computational

expense of computing the product Tt
0T0 is comparable to the

expense saved by analyzing the smaller of the two matrices,

Tt
0T0 proves to be more useful as a conceptual tool than as a

computational tool.

The conceptual utility of the symmetric matrix approach is

best understood in the context of singular values. If the ith

singular value �i of M is small relative to the largest singular

value �1 of M, then the corresponding relative singular value

�2
i of MtM will be even smaller relative to �2

1. In other words,

�2
i =�

2
1 <�i=�1, so that the singular value of a quasi-RUM is

more likely to be differentiated as relatively small when using

the symmetric MtM matrix.

Because the present work exploits block separability and

singular value decomposition, the difficulty initially encoun-

tered by Campbell et al. (2018) is no longer an issue. However,

the differentiation of quasi-RUMs from false positives can be

improved when needed by simply squaring the singular values

of matrix T0. In the CAZO example, the smallest relative

singular values of irreps U1 and Z1 are 1.86 � 10�3 and

5.86 � 10�3, respectively, which differ by a multiplicative

factor of 3.15; after squaring, they differ by an order of

magnitude.

10. Conclusions

The identification of possible cooperative rigid-unit modes in a

crystalline material is important for understanding and

controlling its phase transitions, phonon dynamics and other

physical properties. Campbell et al. (2018) developed a general

algebraic approach to discovering RUMs that employs rota-

tional symmetry-mode patterns in the small-angle approx-

imation. Here, we present several critical improvements to the

original implementation.

Considerable computational expense can be saved by

determining the null space of the matrix T0 rather than of the

full constraint matrix M. All constraints on the space of

allowed symmetry-mode combinations are contained in the

smaller T0 matrix, which has a column for each rotational/

displacive symmetry mode but no columns for shared-atom

displacement parameters; it also has 3Nshared fewer rows than

M. We further prove that the multi-pivot shared-atom

displacement pattern induced by a rotational/displacive pivot-

atom symmetry mode of a given irrep is also a basis function of

the same irrep, and that this implies that the columns of T0 are

separable into strictly independent blocks by irrep and OPD

branch, so that the null space of each column block can be

determined separately without loss of generality. This leads to

another very significant reduction in computational

complexity. Relative to the original algorithm based on matrix

M, the complexity reduction expected from the use of a block-

separated T0 matrix is over three orders of magnitude for

HTB and TTB, and over two orders of magnitude for CAZO.

Block separability saves computation time, greatly reduces the

accumulation of propagated uncertainties and round-off

errors, and prevents numerical interference between inde-

pendent variables.

In cases with approximate RUMs, the null-space determi-

nation by Gaussian elimination tends to be unstable owing to

nonlinear treatment of small matrix pivots, whereas an SVD is

both stable and robust. Each RSV corresponding to zero

singular values is a RUM, while each RSV corresponding to

near-zero singular values is a quasi-RUM. Squaring the

singular values of T0 and presenting them relative to the

largest singular value tends to better differentiate the rela-

tively small singular values of quasi-RUMs from those of false

positives.

We define relative r.m.s. deviation as a quantitative measure

of the extent to which a pattern of rotations and displacements

distorts the rigid units of the interconnected network and

demonstrate its utility in differentiating RUMs from non-

RUM-like patterns.

These theoretical and computational improvements to the

algebraic RUM-search algorithm have now been employed in

a new web-based software tool for RUM identification called

ISOTILT, which is a new component of the ISOTROPY

Software Suite (https://iso.byu.edu). A companion article on

the ISOTILT software (Campbell et al., 2021) will contain

more detail for each of the HTB, TTB and CAZO examples,

and will show the reader how to reproduce the data in

Tables 1–4 and to visualize the resulting RUMs.

APPENDIX A
Proof of block separability

In the discussion that follows, all rotation and displacement

vectors are expressed in Cartesian coordinates.

The i component of the vector rotation of pivot atom � in

normalized rotational symmetry mode m is called r(�i)m. In

joint row index (�i), � runs over all pivot atoms in the child

cell and i runs over each of the three vector components of

atom �. The column index m runs over each of the rotational

symmetry modes allowed by the symmetry of the child

structure. More accurately, r(�i)m should be viewed as a

numerical matrix of coefficients which, when acting on the
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vector of variable symmetry-mode amplitudes, yields the

actual pivot-atom rotations.

The vector displacement of shared atom � due to pivot

atom � in rotational symmetry mode m is called uð��kÞm, which

lives in a space where each shared atom has as many displa-

cement vectors as it has connected pivots. In the joint row

index ð��kÞ, � runs over all shared atoms in the child cell, ��
runs over all DCPAs, i.e. pivot atoms that are directly

connected to shared atom �, and k runs over the vector

components of the corresponding shared-atom displacement.

The subscript in �� is employed because the � index is defined

separately for each shared atom �. Here, uð��kÞm should also be

viewed as a matrix of numerical coefficients which acts on the

vector of symmetry-mode amplitudes to yield the actual

shared-atom displacements.

Because the displacements of symmetry-related shared

atoms are redundant, it is often convenient to consider only

the displacements of the SUSAs in the child cell. The quantity

uð��kÞm is a truncation of uð��kÞm which includes only the rows

corresponding to SUSA �. In a similar fashion, the quantity

r
ð�‘Þm includes only the independent variable components of r

from the SUPAs in the child cell. In the joint index (�‘), � runs

only over SUPAs and ‘ runs over the nonzero independent

vector components of atom �.

The j component of the bond vector reaching to shared

atom � from pivot atom � is bð�� jÞ. We also define the Levi–

Cevita tensor �ijk in the usual way: +1 when ijk is an even

permutation of 123, �1 for an odd permutation and 0 other-

wise.

Without its index, the symbol a represents a vector

containing the am amplitudes of all rotational symmetry

modes. Similarly the matrices r, b, u, r and u represent all of

the respective components of r(�i)m, bð��kÞm, uð��kÞm, r
ð�‘Þm and

uð��kÞm, where in each case the joint index in parentheses runs

over matrix rows while the last index runs over matrix

columns. The matrices u and r were, respectively, referred to as

TS and TA in the main body of this paper.

The multi-pivot shared-atom displacement pattern asso-

ciated with a rotational symmetry mode is then computed as a

vector product of rotation vectors and bond vectors:

u ��kð Þm ¼
P
ij�0
����0r �0ið Þmb ��jð Þ�ijk; ð10Þ

where �0 runs over each of the pivot atoms in the child cell and

where the Kronecker � is 1 if �� and �0 indicate the same pivot

atom (modulo a lattice vector) or 0 otherwise.

The index m is a compound index that specifies an irrep

(�m), a branch (Bm) of the order-parameter direction of the

irrep and an instance (Im) of the irrep. We define a square

matrix �(g)mn such that the row = m and column = n element

of the matrix is equal to the row = Bm and column = Bn

element of the irrep matrix of parent space group element g

for irrep �m when �m = �n, or else zero if �m
6¼ �n. By defi-

nition, the rotational symmetry modes must transform under

the influence of space-group element g according to the

coefficients of the contributing irreps as

ðg 	 rÞ �ið Þm ¼
P

n

r �ið Þn�ðgÞnm; ð11Þ

where we have used the ‘ 	 ’ symbol to indicate the action of

the space-group symmetry element.

In the three-dimensional space of the crystal, the action of

the symmetry operation is directly expressed as

ðg 	 rÞ �ið Þm ¼
P
�0 i0
jP

g
��0 jP

g
ð�iÞð�0 i0Þr �0 i0ð Þm; ð12Þ

where indices i and i0 run from 1 to 3, P
g
��0 is the point portion

of the three-dimensional vector transformation enacted by g

when that action takes atom �0 to atom � (modulo a lattice

vector) or zero otherwise, and the determinant factor accounts

for the axial vector nature of rotations. Putting equations (11)

and (12) together, we see thatP
�0 i0
jP

g
��0 jP

g
ð�iÞð�0i0Þr �0 i0ð Þm ¼

P
n

r �ið Þn�ðgÞnm: ð13Þ

Before the rotational order parameter is introduced, the

pattern of bond vectors already respects the parent symmetry

group. So when we reach back to the SUSA–DCPA pair �0�
that will transform under g into atom pair ��, the corre-

sponding bond vector bð�0�j0Þ transforms into bð��jÞ. Mathema-

tically, we express this invariance as follows:

ðg 	 bÞ �� jð Þ ¼
P
�0�j0

P
g
ð��jÞð�0� j0Þb �0�j0ð Þ ¼ b ��jð Þ: ð14Þ

We are now ready to consider the action of g on the full

multi-pivot shared-atom displacement pattern induced by a

rotational symmetry mode. By combining equations (10), (11)

and (14), we obtain

g 	 uð Þ ��kð Þm ¼
P
ij�0
����0 g 	 rð Þ �0 ið Þm g 	 bð Þ ��jð Þ�ijk

¼
P
ij�0
����0

P
n

r �0 ið Þn�ðgÞnm

� �
b ��jð Þ�ijk

¼
P

n

P
ij�0
����0r �0 ið Þnb �� jð Þ�ijk

 !
�ðgÞnm

¼
P

n

u ��kð Þn�ðgÞnm: ð15Þ

Thus we conclude that the multi-pivot shared-atom displace-

ment pattern induced by a rotational symmetry mode of a

given irrep is also a basis function of the same irrep.

The two distinct rotational symmetry modes r(�i)m and r(�i)n

are irrep basis functions, and are therefore orthogonal (as �i

runs over all Cartesian components of all pivot atoms in the

child cell), because that is how we defined them. Thus, the

columns of r are pairwise orthogonal. Now, because the

rotation-induced shared-atom displacive modes are also irrep

basis functions, we know that two distinct rotation-induced

displacive modes uð��kÞm and uð��kÞn must be orthogonal when

they correspond to different irreps or irrep branches, i.e. when

�R(m) 6¼ �R(n) or when both �R(m) = �R(n) and BR(m) 6¼

BR(n). Note, however, that there is no guarantee that distinct

modes of the same irrep and branch will be orthogonal or even

independent.
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We have proven that the columns of u are irrep basis

functions and must therefore be mutually orthogonal when

corresponding to distinct irreps or irrep branches. However,

the algebraic RUM-search algorithm did not employ the

columns of u, but rather the columns of u. Whereas a column

of u has three rows for each of the shared atoms in the child

cell, a column of u only has rows for the SUSAs. What can we

then say about the orthogonality or independence of the

columns in u?

First, it is obvious that there exists a matrix R such that

r ¼ R r. The matrix element R
ð�iÞð�‘Þ is 1 when pivot atom �

is related by symmetry to SUPA � and the ith vector

component of the rotation vector of atom � corresponds to the

lth free rotational parameter associated with atom �, or zero

otherwise. It essentially transforms any rotational pattern

from its SUPA representation to its all-pivot-atom repre-

sentation. Because no row of R can have more than one

nonzero element, it is also obvious that the columns of R are

pairwise orthogonal. Thus there exists a well defined left

inverse R�1
left ¼ ðR

t
RÞ
�1
R

t such that r ¼ R�1
leftr.

Second, in equation (16), we can gather the coefficients of

rð�0 iÞm in uð��kÞm into a matrix Zð��kÞð�0 iÞ so as to obtain the matrix

equation u ¼ Zr ¼ ZR r. We can also do something similar

with u and r to obtain u ¼ ZR�1
leftr ¼ Zr. In component form,

these relations are expressed as in equations (16) and (17):

u ��kð Þm ¼
P
ij�0
����0r �0 ið Þmb �� jð Þ�ijk

¼
P
i�0

Zð��kÞð�0 iÞr �0 ið Þm; ð16Þ

u ��kð Þm ¼
P
ij�0
����0r �0ið Þmb ��jð Þ�ijk

¼
P

ij�0�‘

����0R �0 ið Þð�‘Þrð�‘Þmb ��jð Þ�ijk

¼
P
�‘

Z
ð��kÞð�‘Þrð�‘Þm: ð17Þ

Clearly, it does not matter whether we use r or r; they are

interconvertible.

Third, the conversion from u to u merely involves the

removal of dependent rows, which does not change the row

space of the matrix and cannot therefore affect the indepen-

dence of its columns. Thus, columns or sets of columns that

were mutually independent in u must still be mutually inde-

pendent in u, though columns that were mutually orthogonal

in u might not remain orthogonal in u. The columns associated

with different irreps or irrep branches are orthogonal and

hence independent in u, and must therefore also be inde-

pendent in u, but not necessarily orthogonal.

Fourth, the reduction of a matrix to reduced row-echelon

form isolates the dependencies between its columns. Groups

of columns that have no mutual dependencies (i.e. no linear

combination of the columns in one group can equal any linear

combinations of another group) can be reduced separately

with no loss of generality. Blocks of columns in u associated

with distinct irreps or irrep branches are mutually indepen-

dent and can therefore be row reduced separately. We can say

that such a row-reduction problem is ‘block separable’.

Because the computational complexity of the row-reduction

process scales as nrn
2
c, where nr is the number of rows and nc is

the number of columns, the exploitation of block separability

can offer a very significant reduction of computational

expense, particularly when the matrix has a large number of

small blocks.

In summary, the multi-pivot shared-atom displacement

pattern (with separate displacements of the shared atom for

each connected pivot atom) induced by a rotational symmetry

mode of a given irrep is also a basis function of the same irrep,

so that such patterns enjoy the special orthogonality and

completeness properties generally associated with irrep basis

functions. The RUM-search algorithm of Campbell et al.

(2018) is based on the row-reduction of matrix u as defined

above, which is obtained from the matrix u of multi-pivot

shared-atom displacements via the removal of all dependent

rows, so that two sets of columns in u are mutually indepen-

dent if and only if the corresponding set of columns in u are

mutually independent. Thus, the RUM-search algorithm is

separable into blocks of rotational symmetry modes, one for

each distinct irrep and order-parameter branch, which can

then be row reduced separately. Because the rotational

parameter space available to the pivot atoms of a structure is

often finely divided across multiple irreps and order-para-

meter branches, block separation will tend to be very advan-

tageous.
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